АТФ

Структура АТФ

На рис. 9.2 представлены два способа изображения структуры АТФ. Аденозинмонофосфат (АМФ), аденозиндифосфат (АДФ) и аденозин- трифосфат (АТФ) относятся к классу соединений, называемых нуклеотидами.

АТФ

Молекула нуклеотида состоит из пятиуглеродного сахара, азотистого основания и фосфорной кислоты (разд. 5.6.1). В молекуле АМФ сахар представлен рибозой, а основание — аденином. В молекуле АДФ две фосфатные группы, а в молекуле АТФ — три.

Значение АТФ

При расщеплении АТФ на АДФ и неорганический фосфат (Фн) высвобождается энергия:

АТФ

Реакция идет с поглощением воды, т. е. представляет собой гидролиз (в гл. 3 мы много раз встречались с этим весьма распространенным типом биохимических реакций). Отщепившаяся от АТФ третья фосфатная группа остается в клетке в виде неорганического фосфата (Фн).

Выход свободной энергии при этой реакции составляет 30,6 кДж на 1 моль АТФ. Из АДФ и фосфата может быть вновь синтезирован АТФ, но для этого требуется затратить 30,6 кДж энергии на 1 моль вновь образованного АТФ.

АТФ

В этой реакции, называемой реакцией конденсации, вода выделяется. Присоединение фосфата к АДФ называется реакцией фосфорилирования. Оба приведенных выше уравнения можно объединить:

АТФ

Катализирует данную обратимую реакцию фермент, называемый АТФазой. Всем клеткам, как уже было сказано, для выполнения их работы необходима энергия и для всех клеток любого организма источником этой энергии служит АТФ.

Поэтому АТФ называют «универсальным носителем энергии» или «энергетической валютой» клеток. Подходящей аналогией служат электрические батарейки. Вспомните, для чего только мы их не используем.

Мы можем получать с их помощью в одном случае свет, в другом звук, иногда механическое движение, а иногда нам нужна от них собственно электрическая энергия. Удобство батареек в том, что один и тот же источник энергии — батарейку — мы можем использовать для самых разных целей в зависимости от того, куда мы ее поместим. Эту же роль играет в клетках АТФ.

Он поставляет энергию для таких различных процессов, как мышечное сокращение, передача нервных импульсов, активный транспорт веществ или синтез белков, и для всех прочих видов клеточной активности. Для этого он должен быть просто «подключен» к соответствующей части аппарата клетки.

Аналогию можно продолжить. Батарейки требуется сначала изготовить, а некоторые из них (аккумуляторные) так же, как и АТФ, можно перезарядить. При изготовлении батареек на фабрике в них должно быть заложено (и тем самым израсходовано фабрикой) определенное количество энергии.

Для синтеза АТФ тоже требуется энергия; источником ее служит окисление органических веществ в процессе дыхания. Поскольку для фосфорилирования АДФ энергия высвобождается в процессе окисления, такое фосфорилирование называют окислительным. При фотосинтезе АТФ образуется за счет световой энергии.

Этот процесс называют фотофосфорилированием (см. разд. 7.6.2). Есть в клетке и «фабрики», производящие большую часть АТФ. Это митохондрии; в них размещаются химические «сборочные линии», на которых образуется АТФ в процессе аэробного дыхания.

Наконец, в клетке происходит и перезарядка разрядившихся «аккумуляторов»: после того как АТФ, высвободив заключенную в нем энергию, превратится в АДФ и Фн , он может быть вновь быстро синтезирован из АДФ и Фн за счет энергии, полученной в процессе дыхания от окисления новой порции органических веществ.

Количество АТФ в клетке в любой данный момент очень невелико. Поэтому в АТФ следует видеть только носителя энергии, а не ее депо. Для длительного хранения энергии служат такие вещества, как жиры или гликоген. Клетки весьма чувствительны к уровню АТФ.

Как только скорость его использования возрастает, одновременно возрастает и скорость процесса дыхания, поддерживающего этот уровень. Роль АТФ в качестве связующего звена между клеточным дыханием и процессами, идущими с потреблением энергии, видна из рис. 9.3.

АТФ

Схема эта выглядит простой, но она иллюстрирует очень важную закономерность. Можно, таким образом, сказать, что в целом функция дыхания заключается в том, чтобы вырабатывать АТФ.

9.2. Дополните схему на рис. 9.3 в левой ее части, чтобы показать, как в конечном счете в виде глюкозы запасается солнечная энергия.

Суммируем вкратце сказанное выше.

1. Для синтеза АТФ из АДФ и неорганического фосфата требуется 30,6 кДж энергии на 1 моль АТФ.

2. АТФ присутствует во всех живых клетках и является, следовательно, универсальным носителем энергии. Другие носители энергии не используются. Это упрощает дело — необходимый клеточный аппарат может быть более простым и работать более эффективно и экономно.

3. АТФ легко доставляет энергию в любую часть клетки к любому нуждающемуся в энергии процессу.

4. АТФ быстро высвобождает энергию. Для этого требуется всего лишь одна реакция — гидролиз.

5. Скорость воспроизводства АТФ из АДФ и неорганического фосфата (скорость процесса дыхания) легко регулируется в соответствии с потребностями.

6. АТФ синтезируется во время дыхания за счет химической энергии, высвобождаемой при окислении таких органических веществ, как глюкоза, и во время фотосинтеза — за счет солнечной энергии. Образование АТФ из АДФ и неорганического фосфата называют реакцией фос- форилирования.

Если энергию для фосфорилирования поставляет окисление, то говорят об окислительном фосфорилиро- вании (этот процесс протекает при дыхании), если же для фосфорилирования используется световая энергия, то процесс называют фотофосфорилированием (это имеет место при фотосинтезе).

Литература. Биология : в 3 т. Т. 1 / Д. Тейлор, Н. Грин, У. Стаут ; под ред. Р. Сопера

AOF | 12.01.2021 12:44:45